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448 M.R.FLANNERY

of recombination. Further development of the theory leads to interesting insights into
the full variation with N of «, which is shown to yield the correct limits at low and
high N. The recombination rate a is determined by the limiting step of the rate o,y for
ion reaction and of the rate ayr for ion transport to the reaction zone. An analytical
solution of the time-dependent Debye-Smoluchowski equation, which is a natural
consequence of this theory, is provided for transport-reaction under a general inter-
action V, for an instantaneous reaction (orn > atr) and for a finite rate (otrn = ayr) of
reaction within a kinetic sink rendered compressible by variation of gas density.
Expressions for the transient recombination rates a(¢) are then derived, and are
illustrated. The exhibited time dependence lends itself to eventual experimental verifi-
cation at high M.

A theory that investigates the variation of a with ion density N+ is also developed.
Here the ion—ion interaction ¥ can no longer be assumed ab initio to be pure coulomb but
is solved self-consistently with the recombination. Recombination rates for various
systems are illustrated as a function of N by a simplified method for the reaction rate.
Finally, two theoretical procedures are proposed for the solution of the general phase-
space ion distributions.

1. INTRODUCTION

Ever since the pioneering developments by Langevin (1903) of ion—-ion recombination at high
gas densities N, and by Thomson (1924) of the low density limit, theorists have sought a basic
theory to link the linear three-body (Thomson) region to the nonlinear gas density region with
the aim of eventual connection to the high density (Langevin) region in which the combined
macroscopic effects of mobility (Langevin 1903) and of diffusion (Harper 1932, 1935) control
events. Natanson (1959), by generalization of a method of Fuks (1958) on evaporation of water
droplets in a gaseous medium, provided some insight to this link, although his approach remains
phenomenological in the spirit of the approaches of both Langevin and Thomson. The concept
of a trapping radius was invoked in all three studies and was so chosen by Thomson and Natanson
that a single strong ion—-neutral collision for ion pairs with separations within this radius produced
recombination. Mechanisms resulting in mobility or diffusion, or both, were treated (if at all)
as macroscopic.

These phenomenological approaches masked the essential theoretical problem, which is
complex and difficult in that the macroscopic effects and recombination sinks require address in
language of their basic microscopic origins. Any simplifications introduced through concepts of
mobility, diffusion and trapping radii for description of macroscopic phenomena without
recourse to their microscopic origin are inherently theoretically unsound, unless the full and
detailed phase-space history of an ion pair has first been established, with all macroscopic charac-
teristics being the effect of, rather than the cause of, such microscopic behaviour.

Suffice it to note this history has, in general, not been established, except in the low-density
limit when diffusion-mobility effects are sufficiently fast to support equilibrium such that recom-
bination is limited by reaction alone, as opposed to transport. Bates & Moffett (1966) and Bates &
Flannery (1968) succeeded in developing the first rigorous theoretical account of recombination—
reaction based on microscopic energy-change principles; they then established by quasi-
equilibrium kinetics the essential development in internal energy E of ion pairs recombining
solely by reaction. Bates & Menda¥ (19784), by distinguishing between expanding and con-
tracting ion pairs, have proposed an interesting extension of the quasi-equilibrium method into
the nonlinear region and have shown a variation of the recombination coefficient & with gas
density N, consistent with the initial nonlinear ascent with N as given in the phenomenological
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treatment of Thomson (1924). However, at pressures greater than 1 atm? (at 0 °C), the Thomson
model predicts saturation in a, and fails. Coupling with the macroscopic effect of mobility, i.e.
the diminishing effect of accelerations produced between collisions by the mutual ion-ion
electrostatic field, is absent in both treatments. As will be shown here, the Thomson model is a
model for the reaction rate and neglects the rate of ion transport, an assumption valid only at
low N. Bates (1975) generalized the Harper-Langevin result by including (macroscopically) both
diffusion and drift in the ion-transport rate which in the limit of high N is the rate of recombi-
nation since reaction proceeds infinitely fast.

The above references reflect the key pivotal theoretical developments, until now, that have
contributed to the basic understanding of ion—ion recombination in a gas.

Since the overall theoretical problem is so complex and difficult, resort in the meantime has
been made to procedures (Flannery 1978, Flannery & Yang 19784, b, Wadehra & Bardsley 1978,
Flannery 1976) that are all essentially modifications of Natanson’s expression (based on the strong
collision concept) or else to Monte-Carlo computer simulations (Bates 19804, 4; Bates & Menda$
19785, Bardsley & Wadehra 1980, Morgan et al. 1980) which, although they produce numerical
coefficients &, do not deepen theoretical understanding of the basic issues involved. However, the
Monte-Carlo results may exhibit special characteristics requiring further theoretical explanation
(as in Bates 1980¢). The renewed activity in recombination has been largely prompted by
continuing interest in the overall problem, and in some measure by the key role (cf. Flannery
1979) of ion—-ion recombination in populating the upper molecular states of rare gas—halide
lasers which operate not only at high gas pressures (3—10 atm) but also at high ion-densities
1012 < N+ < 101 cm—3. This is a region for which laboratory experiments of benchmark quality
are as yet not forthcoming because of severe problems (even at low N+, but especially at inter-
mediate and high N).

The aim of this paper is to present the first basic theoretical account of a classical problem, i.e.
the determination of the recombination rate a of

X+ +Y-+7 - [XY] +Z (1.1)

as a function both of gas density and of ion density. The first account of the explicit variation
of a(t) with time will also be provided. To provide some insight, it is worthwhile to review
the essential underlying phenomenological features of ion—ion recombination within a modern
perspective.

1.1. Physical concepts

At high gas densities N, the relative velocity » of the positive and negative ions X+ and Y-,
labelled 1 and 2, respectively, is governed by vq, the drift velocity (K, + K,)E acquired from the
1-2 mutual electrostatic field of intensity E by the ions with mobilities X, , in the neutral gas Z,
labelled 3. The ion-neutral collision frequency (v/A;) in terms of the mean free path A; of either
ion 7 is very high and w4 is therefore in equilibrium with the field. The constant steady-state vq is
achieved as the balance between accelerations in the field direction between i3 collisions, and
decelerations during i-3 collisions. The net (inward) flux Fi;™ (cm~3s-1) of negative ions crossing
spheres of radii Rx centred at each positive ion, distributed with frequency N+cm=3, is about
4nR% va N* N~ so that, under the assumption that all ion pairs with separations R less than Ry

+ atm = 101325 Pa.

32-2
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are assured of eventual recombination, the recombination rate at high gas densities N is equal to
the rate of (drift) transport:

1 dNt  Ft
TNFN-dt T NS
This is the Langevin result, which decreases as N=1. The rate (1.2) is the rate ety of ionic transport
in the absence of diffusion, which is appropriate only at asymptotic R, and is valid when the rate

on = = 4ne(K, + K,), (1.2)

arnof reaction (by three-body collisions within Ry ) is much faster than ay, as at high N where the
large number of third bodies ensures instant deactivation of the ion pairs. The above method
(fortuitously) provides the correct result only for a pure Coulomb attraction; for a general
interaction, the full diffusional-drift equation (§ 2.4) must be solved.

At low gas densities &, ion—neutral collision frequencies are vanishingly small, so the relative
1-2 approach velocity » becomes much higher than the thermal velocity, and a large fraction of
the close ion—ion 1, 2 encounters (within Rx) do not result in mutual neutralization by electron
transfer. Of the velocity-changing —3 collisions, the ones effective for recombination are those
that occur for 1-2 separations R < Ry where the electrostatic field is sufficiently strong for
trapping. Since no angular momentum barrier at positive energies exists for pure coulomb
attraction, trapping involves only those ion pairs with internal energy rendered negative by -3
collisions. If it is assumed that recombination results from a single strong -3 collision (i = 1, 2)
within Ry centred at the other ion, then for low N, a increases linearly with N as

1o = Kog(Rr) ((v) /A1 +{v)/25) = $nRE Nog (v), (1.3)
in terms of some averaged collision frequency {v)/A; and of Keq, the equilibrium constant (§wR3)
averaged over all energies for formation of R-ion pairs with internal separations R < Ry. The
sum of the diffusion cross sections for each i~3 encounter is o'q. For a suitable choice of the trapping
radius Ry, (1.3) agrees with the low density limit of Thomson’s result.

As Nisraised, the ion—sink strength represented by a1, increases to such an extent that its effect
on the number density N;(R) of R-ion pairs becomes important and must be coupled to the
solution of N; though the diffusion—drift equation thereby resulting in an overall increase with N
less than linear (see §2.3) and in eventual decrease, i.e. the rate of reaction increases, becomes
comparable with, and eventually becomes much faster than the transport rate as N is increased.
In contrast, however, Thomson assumed that as N is raised the probability Py(Rp/A;) of effectivet
ion—neutral collisions, for ion pairs with R < Ry, eventually increased to unity as

B(X) = W(Xy) + W(Xy) - W(X) W(X,), X;=Ry/A, (1.4)
where the individual ion-neutral collision probability is (Loeb 1955)
$X(1-3X+2X2-1X3+.), lowN, (1.5)
1, high N,
which yields (1.3) for N low, but which leads to a defective result at high N (althoughThomson’s
survival-diffusion concept is essentially correct). The extension by Bates & Menda§ (1978 4)

W(X) = 1 (1/2X*) [1 —exp (- 2X) (1+2X)]—>{

into the nonlinear region is consistent with the initial nonlinear N-variation of (1.5). The
Thomson rate is only the reaction rate, while Bates & Mendas$ introduced the additional transport
mechanism of diffusion.

The failure of the Thomson model at high N is due both to the neglect within Ry of the
decreasing effect of accelerations produced by the ion—ion field between frequent ion-neutral

1 In the sense of promoting the reaction phase of the recombination.
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collisions, a mobility effect required for thermodynamic equilibrium in the absence of sources
and sinks within Ry, and to the explicit neglect of ion transport by both diffusion and drift under
V outside the reaction Rg-sphere. Both neglected effects, which originate with the transport of
ions in phase space under a field, are a natural consequence of the basic theory (§2). Thus the
Thomson rate is essentially the rate of reaction arn within an incompressible field-free sink § of
ions brought to § not by ion transport (which is ignored) but by their thermal energy. Within
the Pj-factor of (1.4), diffusion is acknowledged only within the field-free sink through the
decrease in survival rate of the ions towards increasingly effective collisions with an increasingly
dense gas. The survival-collision probability P, remains therefore limited to unity at sufficiently
high N (infinitely large collision probability for ions with infinitesimal survival probability).

It will subsequently become apparent that recombination occurs by reaction, at rate arn, of
ion pairs (via three-body effective collisions) brought together by ion net transport at a rate ar
such that the rate o of recombination is determined by the rate-limiting step, i.e. by

a = arnatr/(arn +0¢tr) (1.6(1)
where orn ~ (nR%) Py(X) exp[ — V(Rp) [k T] {v15) (1.60)

is the rate of reaction within Ry, and
o4y = 4D / f * exp (KV/De) R2dR = anKe[t —exp (—/RokT)]*  (1.6¢)
Ry

is the transport rate in terms of the coefficients D = K(kT/e) and K for relative diffusion and
mobility respectively and of the integral which is related to the probability for diffusional escape
in the presence of an instantaneous sink at Ry and an attractive interaction ¥ which is taken as
Coulomb. In this sense, Langevin and Thomson focused on each of the essential components
(transport and reaction, respectively) required for a complete theory of recombination. Each
component provides the correct limit: i.e. at high N when the reaction is instantaneous in com-
parison with transport (arn > tr), the overall rate a from (1.6 a) reduces to (1.6¢) while atlow N,
when the ionic transport is faster than the reaction (attr > arn), (1.6a) reduces to (1.65).

The reaction rate orn is the recombination rate that would pertain (§ 2) provided a Boltzmann
distribution of ions were maintained, a situation that results in no net diffusional drift.

Bates & Flannery (1969) have already noted that Natanson’s expression, designed to cover all
N, could essentially be written as (1.6a). By analogy with the behaviour of a steady current
through an electrical network of two capacitances in series, Bates (1974) expressed a ‘series’
rate such as (1.64) in terms of a theorem. It will subsequently become apparent that the full
microscopic theory of ion—ion recombination places (1.64) on a firm theoretical foundation
and yields remarkable analogies to many macroscopic areas of physics (fluid dynamics, evapora-
tion theory, coagulation of colloids, diffusion in a field, chemical reactions in dense gases,
fluorescence quenching, electrostatics (cf. Appendix A), etc.) and that therein lies partly its
fascination.

1.2. Physical concepts in the present theory

The present theory allows for the full evolution of the density of ion pairs in phase space by
effective and ineffectivet microscopic collisions, by inward and outward diffusion due respec-
tively to the presence of the recombination sink (at small and intermediate R) and to the
diffusional escape reaction to the effect of inward drift (at larger R), and by the accelerations

1 In the sense that these collisions promote thermodynamic equilibrium by ion transport.
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produced by mutual electrostatic ion-ion fields between ion—-neutral collisions in an increasingly
dense medium. In so doing, the macroscopic effects of diffusion and mobility are properly traced
from their microscopic origins which in turn are responsible for the recombination sink, so that
various physical mechanisms are not twice included (unwittingly) through some particular
graftof macroscopic phenomena and microscopic mechanisms. Inlow density treatments (Bates &
Moffett 1966, Bates & Flannery 1968), the acceleration due to the ion—ion interaction is included
correctly; but as the gas density is raised, the diminishing effect of this acceleration due to
increased collision frequencies must be properly acknowledged. Thermal equilibrium at high gas
densities, without the effect of sinks, sources or chemical reactions, is achieved as a balance
between the accelerations so produced by the field between collisions (or by macroscopic inward
mobility) and the outward diffusion of ions due to the R-inhomogeneity produced by the
ion—ion interaction. Presence of a sink naturally implies additional inward diffusion, which
becomes effective at smaller and intermediate R.

1.3. Nolation

The equation in the text in which the symbol is first precisely defined is given in parentheses.

o recombination rate (cm®s™1), (2.51)

Grn, Ao reaction rate (cm®s~!) or recombination rate appropriate to a Boltzmann
distribution of ions, recombination rate at low gas densities, (2.61)

o ornexp [V(R)/kT], (2.44), such that oy(R)n=(R) is frequency of reaction
within R-sphere.

an Langevin rate (4nKe), (1.2)

o (R) transport rate [an{R, [; exp (V/kT) R-2dR}], (2.63)
®ni air(Ry); recombination rate at high gas density, (2.63)
I's(R), I'(R) speed of reaction of R-ion pairs, (2.82)

G all states of ion pairs in the energy continuum, (2.5)

D diffusion tensor, (2.37)

D relative diffusion coefficient (cm?2s—1) of positive and negative ions, (2.43)
Dy diffusion coefficient in the presence of a sink, (5.49)

7 diffusion drift operator, (2.464)

) collision parameter, (4.15)

E electric field intensity, (2.3)

—E energy of arbitrary bound level (—E) of ion pair, (2.47a)

E o, E_y, E_y energy of bound levels —S, —V, and —M of ion pair such that £ y =
max [E_y, E_g], (2.49)

E; internal energy of the ion pair in state i

e electronic charge (4.80324 x 10~Ye.s.u)

F inward flux (negative ions s—!) across a sphere centred at a positive ion, (2.69)

Fy(vi) dvs Maxwellian distribution of speeds, (2.13)

g, 8 ion-neutral relative speed, and velocity, (2.4)

J(R, 1) ~ current (negative ions cm~2s~1) across an R-sphere centred at a positive ion,
(2.45b)

k Boltzmann constant (1.38066 x 10-23 JK—-1)

K relative mobility (cm? Stat V-1s~1) of positive and negative ions, (2.38), (2.43)
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kit(R), collisional rate coefficient (cm3s~1) for conversion of Rj-ion pairs (with internal
ki(E;, Er, R)  separation R and internal energy E;) to Ry-ion pairs by collision with a third
body (gas atom), (2.6)

L(v;) peculiar path length of ions with speed v; in absence of recombmatlon sink,
(5.34, 5.35)

li(R, EY) peculiar path length of ions in recombination process, (5.31)

A mean free path averaged over all speeds of ions in equilibrium, (1.3)

-M bound level of energy E_,; such that E_y = max [E_y(R), E_g], (2.11)

N gas bulk density (cm~3), (1.3)

N, gas density (2.69 x 10'° cm~3) at s.t.p. (Loschmidt’s number), after (2.128)

N+t ion bulk density (cm—3), (1.2)

Ny (R, vy, t) phase-space gas density (cm—3/(cms1)3), i.e. gas density per unit dovy-interval,
(2.4)

N(R,t) configuration-space gas density (cm—3) f Ny(R, v, t) do,, (2.34)

ni(R, vy, t) phase-space density of negative ions, (2.2), (2.3)

ni(R, vy, t) amvini(R, v1,¢) (cm~3/(cms—1)), density of negative ions per unit speed-interval

ni(R, Ey, ¢t )} about v;, (2.8) ‘

no(R, vi) Maxwell-Boltzmann ion density per unit dvi-interval, (2.13)

n(R,?)

n( ?) } configuration-space negative ion density (cm~3) f ni(R, vi,t) dos, (2.26)

o (R )

NE(R,Eyt) configuration density of Ri-ion pairs per unit dR-interval, 4nR?: (R, Ei,t) N+

(cm~—%) with internal energy E; < 0, or per unit dR dv;-interval for E; > 0, (2.10)

N¥(R,Ei,d1,t) phase-space density of Rj-ion pairs, i.e. configuration density per unit do;-
interval, (2.2)

No(R, Ex) Maxwell-Boltzmann ion pair density per unit dR dEj-interval, (2.14)

P, probability of an ion-pair-neutral collision, (1.4)

P4(R), P(R) R, f; exp (V/kT)R-2dR, (2.56), which is such that P(R,)/P(Ry) is the prob-
ability ¢ that an Rg-ion-pair contracts by diffusional drift in the presence of an
instantaneous sink at Ry, (2.77)

P(R, Ry) (2.77a) for instantaneous sink and (2.775) for finite-rate sink.

P°(R, Ry) probability that an R-ion pair expands by diffusion to infinite internal separation
against attractive force, (2.78)

QE-X integral cross section for ion—neutral elastic (E) or charge-transfer (X) collisions,
(2.7), Appendix B.

R, natural unit of length (e2/kT or ¢2K/De) appropriate to coulomb attraction,
(2.57) ~ 55.7nm at 300K.

Ry, R(E) outermost turning point associated with bound-level of energy —E, (2.17),
(2.51); maximum radius of three-body collision sink

R; Internal separation of ion pairs with internal energy Ej, before (2.3)

R, trapping radius appropriate to ion species 7 as a function of gas density, (4.17),
(4.21)

R screening length, (4.7)

Ry Thomson trapping radius (2¢2/3kT) ~ 37nm at 300K, (4.17)

S radius of strong-collision sink, compressible with increasing N, (2.70, 2.82)
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o(g, ¥) differential cross section for ion—neutral scattering in the centre-of-mass frame
T gas temperature (K)

Ti time-interval between collisions, (5.20), (5.34)

V(R) ion-ion interaction potential

-V bound level given by intersection of R and V(R), (2.5)

vy, Vi velocities of gas atom and ion before collision, (2.4)

Vg, Vg velocities of gas atom and ion after collision, (2.4)

w probability for an ion—neutral collision, (1.5)

Xi internal kinetic energy of relative motion of an ion pair, normalized to £ T, (5.36)

2. THEORY OF ION-ION REGOMBINATION AS A FUNCTION
OF NEUTRAL GAS DENSITY

In this section is presented the development of the basic equations to be solved for determi-
nation of the phase-space densities of ion pairs (§2.1), and the development (§ 2.2) of the basic
expression for the rate « of recombination. An exact expression for the steady-state a is provided
(§2.3) in terms of the rates for ionic transport and reaction, and similarities with a density-
dependent reaction sink are explored in § 2.4. Finally, in § 2.5 is presented an analytical time-
dependent solution of the Debye-Smoluchowski equation associated with a general spherical
field for time-dependent ion densities and recombination rates «(¢), a macroscopic equation
which follows quite naturally from the present microscopic theory.

2.1. Basic equation for ton-pair phase density

Consider the drift of negative ions of density n;(R, v, ¢) and velocity v; at time ¢ under inter-
action V(R) across spheres of radius R centred on each positive ion, which are distributed with
density N*cm~3, so that the number density N*(R, Ej, ) of ion pairs with reduced mass M,
within the R-shells of thickness dR, with internal energy

E;i = M, 02+ V(R), (2.1)
and with internal motion directed along o, is
N#(R, Ey, 1, 1) AR = 4nR?dRu;(R, vs, 1) N*. (2.2)

Two approaches with similar effect can be adopted. The fate of an ion pair may be established by
considering its previous history of elastic and inelastic collisions with the neutral gas. Here the
mutual interaction V(R) between the positive and negative ions is internal to the ion-pair system.
The other approach, which we adopt here, is based on the motion of a given species of ion
(negative ions, say) moving under a field of intensity E = — VV/e (which is conservative and now
external to the negative ion) and undergoing elastic ion—neutral gas collisions. Expressions (2.1)
and (2.2) link the basic quantities associated with each approach.

The present development is based on the Boltzmann equation (cf. Chapman & Cowling 1970),
which (in this instance) equates the complete time rate of change of the phase-space distribution
of ions with the appropriate ion-neutral collision rate integrated over the velocity distribution of
the neutral gas species. The basic assumptions inherent in the derivation of the Boltzmann
equation from the fully general Liouville equation (or from the B.B.G.K.Y.{ hierarchy of

1 After Bogoliubov, Born and Green, Kirkwood and Yvon who independently derived the equations between
1935 and 1949 (cf. Ferziger & Kaper 1972).
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equations) for the phase-space distribution of all ionic and gas particles are (a) that only binary
collisions occur via (b) interactions Vi(R) of short range R outside which (¢) the precollision
velocities are distributed randomly with no correlation (molecular chaos), and (d) that the
distribution functions do not vary appreciably during an encounter. These approximations are
fully justified for percussive collisions between spherical particles. For van der Waals neutral—-
neutral and polarization ion-neutral attractions for which V; ~ R-$%, and V; ~ R4 respectively,
long-range collisions do not, however, furnish the significant contribution to the collision integral,
and so for ions moving in a gas, the Boltzmann equation remains valid.

The phase density 7;(R, vi, ¢) of negative ions (to be called Ri-ions which form R;-ion pairs) of
mass m (= M,, the reduced mass of an ion pair) in a conservative external field of intensity E
satisfies the Boltzmann equation (cf. Chapman & Cowling 1970, Ferziger & Kaper 1972, Holt &
Haskell 1965)

) o (SR04 () S0 = () ~(2) e
in which the explicit time rate of change (0n;/0¢) results from the following four mechanisms.

(a) The continuous transport (diffusion) of Ri-ions across the R-sphere due to the R-inhomo-
geneity in ;.

(6) The continuous drift in velocity space due to E which produces an acceleration ¢E/m in
each of the #; AR ions initially with velocity points o; within the phase element Av; AR, i.e. the
R;-ions drift in velocity space at the common rate ¢E/m and are therefore lost from the initial
elementary region.

(¢) The quasidiscontinuous change (0n;/0f)e1 of ions with velocities within Av; upon elastic
ion-neutral collisions which therefore remove ions from one velocity element Aw; to another.
Replenishment to Aw; is due to similar displacements from other elements of velocity space.
Hence,

| Bt ] - f ([a(R, 04, ) Ny(R, 03, 1) —m(R, w1, £) Ny R, v, )] [ 6 (g, 1) d21} o,
(2.4)

where N,(R, v,,t) is the phase-space density of neutral gas species, and where the ion—neutral
differential cross section at relative velocity gi(= vi—v,) for elastic scattering by angle ¥ into
solid angle d€2 is o dQ2. The Q-integration is over that scattering region £’ made accessible for the
production of speeds associated with final ion and neutral velocities v¢(vi, vy, 2) and vj(v1, vy, 2),
respectively consistent with initial fixed »; and »,. Note, however, that these elastic scattering
terms produce energy changes (inelastic effects) to the internal energy E; of an ion-pair system.

(d) The loss of ions (Oni/0t)g due to the recombination sink tends to cause a redistribution
in internal energies E; of an ion pair with fixed internal separation R and represents, in this
sense, a transition probability. We seek to develop a theoretical expression for the microscopic
and overall effect of this term.

Because of their continuous development in phase space, (2) and (b) provide the ‘streaming’
or transport terms. We note that the ion density N* must be sufficiently low (less than about
101 cm—3) compared with the gas density N, so that the effect of ion—-ion direct collisions can be
neglected in comparison with ion-neutral collisions which are only included in (2.4). Hence N,
in (2.4) can be taken as the Maxwell-Boltzmann distribution such that (2.3) with (2.4) is then
the ‘linear’ Boltzmann equation.
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As already mentioned, (2.4) produces inelastic transitions (Ei - Ez) in an Ry-ion pair and on
integrating over »? d9;, an equivalent expression for (2.4) can, onreplacing v; by (2.1), therefore be
written as,

[a—”‘%—_—f”] 1=N[ S (R, Eoy ) kxs(R) — (R, Eiyt) 3 ku(R)], (2.5)

t=—V t=—v
where N is the number density of gas atoms (or molecules) Z, and Nk;;(R) is the frequency at
which an Rj-ion pair is converted into an Re-ion pair by elastic collision of either ion with Z, i.e.

4 Af

N'S k(R) = Nk(Bs, Ey, R) dEy= f " 4Ny () [ f 20(g, ¥) d(cos ) d¢] 03 duy 1d (cos 0);
£ Vmin 2

cosO; = ¥y Dy, (2.6)

where v, Vpax and £’ are such that a final speed v; of ion—ion relative motion is obtained from a
given v; and g and where Af is the number of states in the energy interval dE; about E;. For
example, for symmetrical resonance charge-transfer ion-neutral collisions, with cross section Q¥
independent of relative collision speed, we have (Flannery 1980, Bates & Moffett 1966)

S kin(Es, By, R fkldef (HC) f dE f = Lalto) dvoyg 3 +24/M)1,  (2.7)
T C 2M Vi [ 0

'min

where F; is the Maxwellian distribution in speed v, of the neutral gas, ¢ is the ratio of the mass M,
of the colliding ion to the mass of the spectator ion, and 4 = 7} —Tj, the change in initial and final
kinetic energies $M,(1+¢) v? ; of relative motion of the positive and negative ions. The f-sum-
mation, over all final bound and continuum states of the ion pair, can be replaced by an integral
when a quasicontinuous spectrum of internal energies is assumed. Detailed expressions for the
rates ki¢ associated with elastic ion-neutral collisions have been provided (Bates & Flannery 1968,
Flannery 1981 4). The sum or integration is taken over all final states f of the ion pairs, from the
continuum C down to a level —V, the lowest accessible at R appropriate to interaction energy
V(R). Summation of (2.5), the elastic collision integral, over all initial levels E; (or integration
over all ion speeds vi) is null, in accord with the fact that the number density of all ions is con-
served in elastic collisions. Implicit in the rate (2.5) are the following assumptions.

(a) The gas is in thermal equilibrium so that its density distribution N,(v,) in gas velocities is
isotropic, is independent of both time ¢ and position R and depends only on the speed v,.

(6) The number densities N+ of ions are much less than N, so momentum and energy imparted
to the ions by their mutual field of intensity E and transferred subsequently by collision with the
gas Z have a completely negligible effect on N,(v,). When such thermal gradients do exist, they
cause thermal diffusion in mixtures. The centre of mass of the ion pair is therefore assumed to be
in thermodynamic equilibrium with the gas Z.

(¢) There are spherical symmetric R- and v-distributions of negative ions about each central
positive ion so that the ion densities in (2.4) and (2.5) are related at fixed R by

ni(R,vi, t) = 4mvini(R, vi,t) = mi(R, Ei, t), (2.8)
C ©

S ni(R, Et) = 4nf ni(R, vi, t) v3dv; =f ni(R, vy, ¢) dvs. (2.9)

i=-V 0

Also the density N of ion pairs in the R-shell of thickness dR is related to the negative-ion density

ni by
N#(R,vi,t)dR = (4nR2dR) ni(R, v, t) N* = N}¥(R, Ey, ¢) dR. (2.10)
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(d) The interaction V between the ions is switched off during the ion—neutral collision to be
consistent with the left-hand side of (2.5), in which the field is external to each negative ion, i.e.
the field cannot be included on both sides of the Boltzmann equation (2.3).

The sink term in (2.3) can be written as,

om(R, i, t)] ) N um
B EY] _ R, Ey, ) ku(R) = —av— N#(R, Ey, t) ku(R) (2.1
[ T . f=—2V(R)nf( 1, 2) ki (R) 4nR2N+f=_2€r(R) F(R, Ex, t) knu(R) (2.11)

where the energy of the bound level —M is E_y; = max[E_y(R), E_g] in which E_g is the
negative energy of the bound level — S below which recombination is assumed stabilized against
any upward collisional transitions in energy. If the level — V(R) of energy E_y(R) at R is above
— Eg, then the sink term is ineffective. The sink term (2.11) in effect ensures that upward
transitions, in internal energy, due to elastic ion-neutral collisions, from levels between —V and
—M are not included in the right-hand side of the Boltzmann equation (2.3), and compensates
for their oversubscription in (2.5). With the assumption of R-spherical symmetry in z;, (2.3), with
the aid of (2.4)—(2.11), yields

oni(R, vi, t)+ Oni(R,v1,8)  4m} O [ny(R, vy, t)] (ﬂ/)
ot “\T R mo, ovr| 4moz | \GR

- ffn' [ne(R, vs, t) Ny(vg) — ni(R, v, t) Ny(v,) [ g0 (g, ¥r) d2] do,

C C
_ N[ S n(Ryon ) ka(R) —m(R,v,8) % ku(R)] L (2.12)
f=—-M(R) f=—-V(R)

as the basic equation for the solution of the phase-space densities of negative ions. The corre-
sponding equation for phase-space densities N (R, Ej, t) of ion pairs follows directly from (2.12)
with the aid of (2.10) and of 0/0v; = mv; 0/0F; at fixed R.

When thermodynamic equilibrium prevails, i.e. in the absence of the sink term (2.11), the
steady-state solution to (2.12) is a product of two independent functions, one of position R and
the other of speed v; and is such that both sides of (2.12) simultaneously vanish. The equilibrium
number density of negative ions is found (after a not too trivial exercise) to be

no(R,v1) dvy = N—exp[— V(R)/kT] Fy(vi) dos (2.13a)
= N-exp[— V(R)/kT] [4nv}(m/2nk T} exp (— 3mu/kT) dvi], (2.13b)
where Fy(v;) dv; is the Maxwell distribution in ion speeds v; at temperature 7. The equilibrium

number density of Rj-ion pairs in the R-shell of thickness dR and with internal energy in the
interval dE; about Ej is, therefore, with (2.1) and (2.2),

Ny(R, E:) dRdE; = 4nR2dR [%(—k%—%m ~ V(R exp (~B/RT)AE | NeN-, (2.4

T
of which one half move inward and one half move outward across the R-sphere, respectively.
Also the rates k¢ satisfy the detailed balance relation (Flannery 1981 a)
No(R, Ei) kst(R) = Ny(R, Ex) kri(R) (2.15)

as expected. The equilibrium number density of all ion pairs in all permitted internal-energy
states within the R-shell is

Ny(R)dR = dR| Ny(R, E;) dE; = 4nR*dRexp[ - V(R)/kT] N*N-.  (2.16)

Ej=—V(R)
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The equilibrium number density of ion pairs bound with negative energy in the interval dE

about E'is

Ny(E)dE = dEf ) NL(R,E) dR — T[C(E)exp —E/kT)dE]N*N-,  (2.17)

where Ry(E) is the outermost turning point obtained from E = V(Ry), and where for a pure

coulomb attraction &/\E|
C(E) =f (¢¢/R—|E|)} R2dR = & |E|L, (2.18)
0

as obtained (Bates & Flannery 1968) for the equilibrium energy distribution of bound X+-Y~ion
pairs in the absence of the gas Z.

The right-hand side of (2.12) can be replaced by Ni¥v; where v; is some averaged collision
frequency. The characteristic time for substantial variation in the 0/0¢-term in (2.12) is much
longer than the mean time »;! between collisions so that the explicit time derivative in (2.12) is
negligible with respect to the right-hand side. Hence, by setting

N¥(R,Eyt) = N¥(R, Ey) exp[ — A(E:) 1], (2.19)

in (2.12) and by ignoring the small decay frequency A(E;) of level i in comparison with v;, as in
a steady-state solution, we have

m[[ f 4nkzaR[ 41;21’1)]&3 Zfaii{ [ f N*va)gZdR]}]]
= [ [ TvE Ry 0) Nofe) ~ W2 (B, 1) Ny(o)] (e d9) do, (2.:200)

R c C

=N|[(dr X NHRE)k(R)-NFRE) 3 ke(B)| (2200
0 f=-M®) t=V(R)

as the basic set of coupled integro-differential equations to be solved in general for the steady-

state (R, E;)-distributions of the ion-pair number densities N¥(R, E;). This set is solved subject

to the boundary conditions that
NO(R, Ej), E; > 0, R~ 0,

N¥(R,vi) = NF(R,Ey) = {NO(R, Ey), E;— oo, allaccessible R, (2.21)
0, Ei < —Es, R < R(Eg),
appropriate to the continuous generation of ion pairs with infinite separation.

Note that when the R-integration in (2.20) is taken over the full range of internal separations
occupied by an ion pair of energy Ej, i.e. between the turning points R. of E; = V(R), where
vi(Re, E3) vanishes, then upon assuming that the left-hand side of (2.20) vanishes everywhere in this
range we have

C c
NE(E) E = I N (i) (2.22)
where — V is the lowest bound energy level, the averaged rate is

(ke(Ey, Ex) f N¥(R, Ey) ku(Es, Er, R)dR, Ry = min[R(Ey), R(Ey)], (2.23)

> = T

and the physical density of ion pairs with energy Ej is,

R(E;)
N*(Ey) = f N (R 1) AR (2.24)
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Results (2.22)-(2.24) apply when the left-hand side of (2.20) is assumed negligible at all R
(rather than at the turning points alone), and correspond to the quasi-equilibrium result
originally introduced by Bates & Moffett (1966) and by Bates & Flannery (1968) in their treat-
ment of ion—ion recombination in the low gas-density limit, when the diffusional-drift streaming
terms balance in a Maxwell-Boltzmann quasi-equilibrium. In general, however, the full set of
basic equations (2.20) require solution subject to (2.21) as the gas density is increased.

2.2. Recombination coefficient a_from derived equations of continuity, momentum and flux

To develop an expression for the recombination coefficient « in terms of ion-pair number
densities N{*(R, E;), we proceed by constructing the appropriate flux or momentum equation
from the Boltzmann equation (2.3) as follows. Returning again to (R, v;)-phase space occupied
by the incoming negative ions of density n;(R, v;,¢), we write the v;-averaged value of some
physical quantity Pi(R, v, t) as

1
P(R,t) =(P) = mfnl(R, vi,t) Pi(R, vi,t) doj, (2.25)
where the configuration-space density is
n(R,t) = f ni(R, vs, t) dos. (2.26)

On multiplying the Boltzmann equation (2.3) by P; and integrating over v;, we have

IR n (SN 4 Vo B0 =101 Vo P = (5) TP

f P(R, v, 1) (aa”t‘) f P(R v,,t)( ) do.  (2.27)

However, microreversibility between the direct and corresponding reverse encounters applies
and

[ [ [ ruvitacte,vagaodo, = [ [ [ mndlaotep)dedods, (229
viJ vo viJ vg

since the collision is elastic (g; = g;), and since dv;dv, = dv;dvy, so that, with the aid of (2.4),

[ 2(G) a0 =] [ [ R 0t - PR 2 01 Nileo (e, ) a2) doyduy. - (2:29)

When P, is set to unity the effect of elastic collisions is null (conservation of ions with all speeds)
and (2.27) reduces to on(R, 1)

o) Veen(R,0) (wry = - f (a”) do,, (2.30)

the equation of continuity in the presence of the sink §. When P2, is taken as the vector mw;, since
m(v;—v;) = u(g;—g;), where u is the ion-neutral reduced mass, we can show, after some
analysis, that

[ mou(3) o =~ [Rote) m(R w1, 0) No(R, 0,1 dy o, (2.31)
vj el

where Ro(g) = [&(1 = cos ) o(g, ) 2 (2.32)
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is the momentum-transfer rate (cm3s—') which, for an ion-neutral pure polarization attraction,
is independent of g;, the relative speed |(v; — v,)|. Since the gas is, on average, considered at rest
(with respect to the centre of mass of the ion pair), {v,) is zero such that

fvi o (aait) dos ==n(R, 1) Cvi) [%LRD N(R, t)] =—n(R, 1) (oi)v, (2.33)

el

where the configuration-space density of neutrals is
N(R,0) = [ By(R 0, 1) do, (234)

and the term in square brackets, the frequency v of ion—neutral collisions, is only approximately
a constant for ion-neutral interactions that depart from the pure polarization form. This
frequency can also be derived from (2.5) with the result that

c c
n(R> t) (1.?i>V =N Z Vi E [”f<R5 Ef, t) kﬁ(R) —ni(R5 Ei> t) kif]> (2'35)
i=—V t=-V
where »; can be expressed in terms of E; by (2.1). Hence with (2.83), (2.27) yields the momentum
equation
O[n(R,t){w: E i
_[__(_)(?__>l+ Ve [n(R, ) {vivi)] ~i—n(R, t) =—n(R,t){vdv+| v on do;, (2.36)
ot m o \0t/)g
where the jk-element of the direct product {v;v;) tensor is v, the product of cartesian
components {t{, j = x,y, z} of the velocity v;.

In ion-ion recombination: (@) the recombination—sink rate is many orders of magnitude less
than the collisional rate so that the sink term in (2.36) can be neglected in comparison with
n{vi) v; () the characteristic time for substantial variation of n(R, ) {v;) is much longer than the
mean time v=! between collisions so the time derivative in (2.36) is also negligible with respect to
n{viy v. Macroscopic diffusion is characterized by a flux vector D - Vpn(R, t) both in equilibrium
(Maxwellian) and in non-equilibrium situations, where the diffusion (symmetric) tensor is

D = {wivi)/v (cm?s7?) (2.37)

in terms of the averaged kinetic energy and collision frequency given in (2.33) or (2.35), while
macroscopic drift is characterized by a flux vector KE n(R, t) where the mobility is

K=¢/mv (cm?StatV-1s-1), (2.38)

The ion—neutral collision frequency v is central to both quantities. In thermal equilibrium, i.e
in the low E/N region where the thermal energy dominates the drift energy, m{viv;) = (k7T)1,
where 1 is the unit tensor. When departures from spatial isotropy are dominated by the electric
field E, the diffusion tensor D is diagonal with elements (Dy,, Dy, Dy), longitudinal L and trans-
verse T to the field direction E. In thermal equilibrium these elements are equal so that the
Einstein relation (De = KkT') holds.

We now assume (c) that {v;v;)is R-independent, as in quasi-equilibrium when the phase-space
distribution n; separates into a product n,(R) ny(v;) of separate functions of R and w; as in the
Maxwell-Boltzmann distribution (2.134). Under assumptions (a)—(c), (2.36) provides the current

J(R, 1) = n(R, 1) (vs) = —D-Ven(R, 1) + KEn(R,?), (2.39)
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which together with the equation of continuity (2.30) implies
on(R, 1) +Vg-[=D-Vpn(R,t)+ KEn(R,t)] = — (R, v1,) do;
ot vi o s
C oni(R, Ej, ¢t
i=—V(R) N

in which the summation or integration over all states i between — V(R) and Cis equivalent to the
vi-integration for spherical R-symmetry. On introduction of the null collision quantity,
c c :
3 (MREY T k(R)- X NHREOk(B) =0, (241)
= = =
where — A is an arbitrary bound level, the sink term in (2.40) and given by (2.11) may be
written as

o [Ons < c c  c
> [—-3] =N[ > NfRE,t) ¥ ky(R)— X 2 N?(R,Ef,t)kﬁ(R)](4nR2N+)—1

i=-v(r) L O |g i=—V(R) f=—V i=—Vi=—M (2.49)

On integration of (2.40) over R and with the aid of Gauss’s theorem, of spherical symmetry and
of (2.2), we have, on replacing E by — (VV') /e, the appropriate flux equation

%[LRN*(R’ ?) dR] —4nR? [Dan(a% ?) n(R, t)KgZ] Nt = —ay(R)n(R,t) N+ (2.43)

in terms of the net depletion (recombination) rate (cm=3s-1)
R c c c
wo(R) RN = N[ aR| 3 [NrRED 3 ka(R)- I Nt(REOk(B)]], (248
) 0 i=-V f=-V f=—-M

appropriate to the local (rather than asymptotic) density n(R, ) of negative ions.

Subdivide the spectrum of internal energy into three regions: I, from C to some arbitrary bound
level —E; II, from —E to —M; and III, from —M to — V. Regions I and II are interconnected
by upward and downward collisional transitions and are inaccessible from region III which is

therefore connected with I and II only through downward transitions. Introduce the inward
diffusion-drift operator

F1=DV+(K/e)VV =Dexp(—V/kT)Vexp (V/kT), (2.45)
such that the inward currentj (cm~2s71) is ]1 n(R,t), and the flux operator & which is such that
the flux across the spheres each of radius R and surface area & is

D[AnRN*n(R,1)] = — N+ f J-dS = xRN+ (R, £). (2.46)
F

Einstein’s relation De = Kk T has been used in (2.45) since the ions are in quasi-equilibrium with
the field.
The contribution from region I to the left-hand side of (2.43) is therefore

o[ (E R c -E -B
“a[ f N}‘(R,t)dR]+=@N§‘(R,t)=N dR ¥ (N;" S k- S N;kkﬁ), (2.470)
0 f=—v f=—M

0 i=-E
on making use of the null collision relation (2.41) with — A taken as —E, and where explicit
dependences in the right-hand side are omitted. The right-hand side of (2.474) is constant for
R > R, the outermost turning point associated with —E, i.e. V(Ry) = — E. For region 1II,
R -E c
atU N% (R, ) dR] +ONERY) = N[ dR 3 (N{" S k- S NF kﬂ) (2.478)
t=-V .

0 i=—M t=—M
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while for region III,

[f NI.[I R t dR] +‘9NIII(R t) = ‘—'N dR Z 2 Nf kﬁ (2.470)

0 i=-Vi=—

For all three regions the number densities N*(R, Ei,¢) on the right-hand side of (2.47) are
solutions of the time-independent set (2.20) of coupled integro-differential equations. As pre-
viously noted, the left-hand side of (2.20) vanishes as R tends to the turning points R(E;) asso-
ciated with bounded motion for a state of (negative) energy E;. For the spectrum of bound levels
in region II, it follows that the left-hand side of (2.20) does not depart appreciably from zero,
particularly for levels — E and — M sufficiently close and deep, so that the radial extent of the
associated bound orbits is minimal. Hence for region II, we have

NHRED) B kR~ B NEREOR(R); ~E>E>Ey  (249)
as for quasi-equilibrium at each R. Thus the right-hand side of (2.475) vanishes in this approxi-
mation, in contrast to that for region I which includes the unbounded continuum and highly
excited vibrational levels with large amplitudes of radial motion. Since all ion pairs with energy
below — Fy have recombined and are irretrievably lost to the recombination in progress,
N#(R, (E_y > E_y)) vanishes, so that (2.48) implies, in the above approximation, that

fﬁEj NY (R, Ey, 1) ky(R) ~ 0, E y2E > Ey, (2.49)
which makes the right-hand side of (2.47¢) vanish. This effectively zero rate is not difficult to
establish since the collision rates ki; are relatively large only between neighbouring levels, which
in this case are in a range surrounding — M at which the number densities N of active ion pairs
have already become much reduced from their equilibrium values (2.14) by the recombination
process. Hence upon addition of 2.47 (a)—(c) over the three regions, the overall number density
N*(R,t) satisfies

) -®
U N*Rt)dR] N+f J-dS = Nf dR (N;" S k- 3 N;“kﬁ)
f=—v f=—M

= ay(R) n(R, t) N*. (2.50)

i=—E

Steady-state conditions can be maintained by continuous generation of ion pairs with infinite
separation at an inward flux rate

P, = ~N+f J-ds
F—0

so that
—d(N%)/dt+ F, = oa3(Rg,t)n(Ry) Nt = aN+tN-, (2.51)
where Ry is the maximum radius associated with collisional transitions across the energy level
—E,i.e. V(Rg) = — E. Hence the steady-state recombination coeflicient is,
& = ay(Ry) n(Ry) [N~
' ~E
)[R 3 (MR E) B kR~ 3 NEREVRG®)|, (2
N+N- i=—E f=—v t=—

where the number densities Ni(R, E;) are determined by appropriate solution of (2.20) subject
to the boundary conditions (2.21). The solutions will, in general, depend on gas density N, and a
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i s then a general function of N. We note that (2.51) equates the steady-state inward flux a N~ or
4nR2 #in with at3(Ry) n(Ry) which is the net rate of reaction within Rg. Thus (2.51) and (2.52)
manifest quite clearly a partially absorbing boundary condition at Ry around which the ion
density is continuous.

In summary we have obtained in this section the necessary equation (2.20) for solution of
N¥(R, Ei, t), and the appropriate equation (2.50) or equivalent expression (2.52) for the recombi-
nation coefficient « from the appropriate flux equation (2.43), a combination of a derived
momentum equation (2.36) and the equation of continuity (2.30).

2.3. Steady-state solution
As R - Ry and beyond, N*F¢(R), the right-hand side of the flux (2.50) becomes constant.
Let the ion-density N*(R,t) decay as N*(R) exp (— 4¢) so that (2.50) reduces, with the aid of
(2.51), to

R
N*tFo(Ry) = AN+ f 4nR?n—(R) dR + 4nREN+D exp (— V/kT) 561‘3 [n=(R,¢) exp (V/kT)]
0

= ay(R)n~(R) N+ = aN*N-, R > R (2.53)

where n=(R) denotes the density of negative ions.
The steady-state solution of (2.50) involves neglect in (2.53) of the A-term which depends on
n~(R) within Ry. This neglect implies

R
f “4nR2n-(R)dR < 1 (2.544)

0

since A ~ aN—, such that N- < ($nR%)1, (2.54b)

i.e. few unreacted ions must be present in the ‘recombination volume’ as measured by the
Ry-sphere in order that the frequency decay constant A may be neglected. Given Ry ~ ¢2/kT
for example, appropriate to a bound level at k7 below the dissociation limit, N+ < 10%cm—3
for validity, while smaller Ry, (as at high N) will extend the limits to higher N +. Integration of
(2.53) under the steady-state condition then yields

N=—n=(R) exp (V/kTeyy) = [Fe(Rg)/oan] P(R), R > Ry, (2.55)
where an = 4nDR,, the high density Langevin limit (1.2);

P(R) = R, f : exp (V/kToy) dR/R?, (2.56)

is an important function related to the probability (§2.4) that the R-ion pair expands by
diffusional drift to infinite separation; and

R, = ¢/ (De/K) = e2/kT,y, (2.57)

is the natural unit of length. At low £/N when the thermal energy dominates the drift energy,
thermal equilibrium at temperature 7 is obtained, and the Einstein relation De = KkT or,
equivalently, DR, = Ke, holds such that T in (2.55) and (2.56) is simply 7. The steady-state
negative-ion density outside Ry can, with the aid of (2.53) be written in two equivalent forms:

N—exp [ - V(R)[KT] [an/P(R)]
a3(R) exp [~ V(R) /kT] +on/P(R)’

n~(R) = N-exp (- V/kT) [1 —%P(R)] _

33 Vol. 304. A
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in which T, is denoted here by T for brevity;

n—(R) = N-exp (— V/kT) exp[ R f " ay(R) R—2dR]. (2.580)

_le
pJ R

Hence the overall recombination coefficient o from (2.53) is

- __ a3(Ry) exp[—~ V(Ry,) /kT] [an/P(Rp)]

o = ol ) /N = S SR T ) ~ ()
in terms of &, which is known, and of a;(Rj) which is yet to be determined. Since a4 is internally
dependent on the phase densities, N} (R, E,), through (2.44), we note that a, with this required
knowledge of N, may, of course, be determined directly from (2.52) rather than from (2.59).
However, not only does (2.59) promote further physical and basic understanding of recombi-
nation, but it is also very effective when alternative means are used to deduce o4(Ry), as, for
example, in § 4.2. Steady-state conditions are also achieved at R > Ry, effectively instantaneously
for low &, and after time lapse ¢> R%/D for high N (see § 2.5), and are independent of condition
(2.545).

Since an ~ N-1, from (2.58), at low gas densities &,

n~(R) ~ N-exp[-V(R)/kT], R = Ry, (2.60)
the Boltzmann distribution, such that (2.59) tends at low N to
o, = ag(Ry) exp[— V(Ry) /kT] = 0y (Rp), (2.61)

which is from (2.53) the recombination coefficient that would pertain provided the Boltzmann
ion-distribution were maintained (as atlow N), i.e. arq in the absence of net jonic transport (as in
a Boltzmann distribution) measures the rate of reaction within Ry. Thus, (2.59) reads,

a = arn“tr/(arn +Cﬂtr), (2.62)
where the recombination coefficient ay,; at high gas densities is,
oy = 41rD/foo exp (KV/De)R-2dR = [ay/P(Ry)] = a4, (2.63)
RE )
the rate of ion transport by diffusional-drift. Hence, the ion number density (2.58) is
P(R)
n=(R) = N—exp (- V/kT [1—i ] R> R, 2.64

At high N, therefore, n—(R) from (2.64) departs significantly from the Boltzmann distribution
at R~ Ry, where the reactivity of the ion pairs is strong; and at low N, n~ is approximately
Boltzmann where the reactivity is weak. As Nisincreased, the reactivity of the ion pairs (resulting
from ‘effective’ collisions in the increasingly dense gas) becomes so great compared with the rates
of ionic transport that continued reaction causes significant depletion in the ionic concentration
in a localized region, and the ion R-distribution from (2.64) is far from Boltzmann. This feature
is, in general, responsible for the failure of the use of equilibrium kinetics (partition functions, etc.)
or of equilibrium concentrations of reactants for rates of chemical reactions in a dense medium,
in contrast to that evident for low density gases (see (2.60)). Itis also this feature that invalidates
the ab initio use of the Debye~Hiickel interaction, appropriate only for equilibrium situations at
asymptotic R, so as to acknowledge possible plasma sheathing effects when the ion densities N+
are raised from 108 cm—3 to about 104 cm=3, Use of an interaction, self-consistent with the ionic
distribution and recombination sink, is the correct procedure (see §4).
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We note that oy and hence a1, contain, in general, a complicated dependence on N through
(2.44) and (2.20). The overall recombination rate (2.59) is, therefore, controlled by the rate-
limiting step of the rate of ionic transport, as measured by a4r, and of the rate of ion-ion reaction
(by effective three-body collisions), as measured by arn. Thus, the full theoretical development
of the relation (2.62) has provided basic insight into a relation previously suspected (Bates &
Flannery 1969), of one that is useful when the rate «;n of reaction can be deduced without explicit
knowledge of the phase densities N} (R, E}), as in §4.2.

The physical significance of P(R) in (2.63) and in (2.64) where it provides the R-variation of
the departure of n~(R) from pure Boltzmann is made apparent in the following subsection; further
study is also made of the separation of recombination into its transport-rate and reaction-rate
components.

2.4. Partially absorbing and fully absorbing sinks: transport and reaction rates
The time-dependent continuity equation (2.40) is

R gy §

2.65
ot i=-V(R) ( )

ani(R, Ei, t):l
T

where the current vector (number of ions per second crossing unit area of an R-sphere)

J= —D[Vn~(R,t)+n~(R,t)V(V/kT)] = —Dexp (= V/kT){d[n"exp (V/kT)]/dR} R, (2.66)
arises from diffusional drift of the ions with relative diffusion coefficient D in the gas Z under an
external spherically symmetric field of potential V(R). Thesink term (2.11) has been shown to be,

og(R,t)n=(R,t) N* = Nf:dR{ zc‘, [N;“(R,Ei,t)f}f‘,:vkif(li)- > Nf(R,E,t) kﬁ(R)]}.

i=—E
(2.67)

which equates the frequency of production of R-ion pairs by diffusional drift to the frequency of
ion reaction within R.

Although the phase-space densitiés ni(R, Ej, ) are in principle solutions of the appropriate
time-dependent Boltzmann equation (2.12), important progress can be achieved upon assump-
tion of either an instantaneous reactive sink or a partially absorbing sink that operates for ion
pairs withinternal separations R < §. Also, the physical meaning of Pin (2.63) becomes apparent.
Thus (2.65) is equivalent, with j = —J, to,

on- 1 O(R¥)

ot R* OR

solved subject to prescribed boundary conditions that characterize the sink under different gas
densities.
The steady-state solutions at R, and R, therefore satisfy

[n~(R) exp (V/kT)]F: = (F/4rD) [P(R,) — P(Ry)], (2.69)

where P(R) is given by (2.56) and F'is the steady-state constant inward flux 4nR?;. For ion pairs
that react (neutralize) instantaneously within the sink S, as at high N,

=0, (2.68)

n=(R,t) =0, R<S,
} (2.70)
n~(R,¢) = N-, R—->
such that (2.68) yields,
tir = oms = F/N~- = 4xD / f exp (V/KT)dR/R, (2.71)
s

33-2
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the transport rate, which at high N is equivalent to the recombination rate. This reduces to
oq = 4nDS (2.72)
when the interaction V between the ions is neglected, and to
oy = 4nDR,/[1 —exp (—R,/S)], (2.73)
for pure coulomb attraction '
VIkT = —Z,Z,¢*/RET = — (R,/R) (2.74)

between ions of charge Z,¢ and — Z,e.

For recombination in a gas, (2.72) and (2.73) are the diffusion and diffusional-drift results of
Harper (1932) and of Bates (1975) respectively. For coagulation of colloid suspensions in a liquid
of permittivity e, analogous expressions (with R, = Z, Z,¢?/¢k T') have been obtained by Smolu-
chowski (1917) and by Debye (1942). For this reason the full time-dependent equation (2.68)
for a spherical field is frequently referenced as the Debye—Smoluchowski equation, derived
originally by Smoluchowski (1916, 1917) from a stochastic random-walk picture of the process.
The interesting feature is that it is a natural consequence of the basic microscopic treatment,
which therefore provides its full generalization (2.65) and (2.67) to an arbitrary compressible
sink based on detailed collisional kinetics which in turn depend on the phase-space densities
n;(R, Ei, t). However, with this knowledge of n;, the steady-state o can be obtained directly from
(2.52), rather than from the solution of (2.65).

It is interesting to note from comparison of (2.72) and (2.73) that proper account of the inter-
action field is acknowledged simply by replacing S in the field-free case (2.72) by R,/P(S); and
that (2.72) alone is incorrect if realistic S oc (R,/N)? (see § 4.2) are adopted. As Nis increased, itis
obvious that the three-body reaction zone must decrease and cannot be arbitrarily held at R, to
ensure identity between (2.72) and the correct limit (2.73). This note helps resolve previous
confusion that existed (see Flannery 1976, p. 423) between treatments based either on pure
diffusion (Harper 1932) or on pure mobility (Langevin 1903). Neither treatment is rigorously
correct: mobility and diffusion effects must be coupled as in (2.71), although only for pure
Coulomb attraction any error in Langevin’s derivation disappears in the high-N limit unlike
that involved with (2.72). This coupling also ensures thermodynamic equilibrium between effects
of mobility and diffusion and is very important to the general determination of the phase-space
densities (§5.2) at intermediate and high N.

A correlation can be established between two problems differing only in the generation
boundary condition, i.e. between the recombination rate « for the homogeneous case where the
process is driven by the boundary condition (2.70) for n(R — c0) and the probability 2¢(R,, Ry)
for the diffusional-drift contraction of ions generated at R,. Between R, and an instantaneous
sink at R, < Ry, (2.69) then yields

n=(R) exp (V/kT) = (F¢/4nD)[P(Rg) —P(R)], Ry < R <R, (2.75)
where F, is the net inward flux at R. In the presence of a sink at infinity,
n=(R)exp (V/kT) = (Fe/4nD) P(R), Ry < R < 0, (2.76)

where Fe is the net outward flux at R. The probability that an isolated Ry-ion pair contracts by
diffusional-drift is

Pioy(Ros Ryg) = Fo(Ry) [[Fe(Ro) + Fo(Ro)] = P(Ro) /[P(Rg), (2.77a)
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where the subscript (s) denotes that this 27¢ pertains only to the case of spontaneous reaction. The
probability that it expands (by diffusion against the force of attraction enhanced by the presence
of the sink) to infinite internal separation is

PRy, Ry) = Fo(Ro)[[Fe(Ro) + Fo(Ry)] = 1—P(Ry)/P(Rg). (2.784)

Thus, in the homogeneous case the negative ion density (2.58) can be rewritten as

n(R) = N-exp (= V/KT)[1 - (/) PR, Re)] —> N=exp (— V/KT) Py(R, Ry), (2.790)

where 2, is interpreted as the probability of diffusional escape of an R-ion to infinity in the
presence of an instantaneous sink at Ry, and yields the fractional departure of n—(R) from pure
Boltzmann at high N.

Hence the recombination rate at high N is the transport rate

ay = 4nRy D exp (— V/ET)[02) (R, Rg) /OR] ryy = on/P(Rg), (2.804a)

where oy is the Langevin rate 4nDR, and Z, is the probability of contraction from R to R,
against diffusional escape. Thus, the phystcal origin of P in the transport rate (2.63), which is
identical to the recombination rate at high N, is now apparent. For pure coulomb attraction at
high N when the sink radius Ry < R,, the escape and recombination probabilities reduce to

Ziy(R) ~ exp (—R,/R), (2.81a)
and P (R) ~ 1—exp (—R,/R) (2.810)

in agreement with Onsager (1938), and n~(R) ~ N-exp (— V/kT)exp (—R,/R).

Extension of the rate (2.73), valid only for instantaneous reaction after ion approach by
mobility—diffusion, to lower gas densities N can be achieved by solving (2.68) subject to the
more accurate boundary condition

j(R,0) = Tyn~(R1), R=S5, (2.82)

where I'y(R) is the speed of reaction of R-ion pairs. This (radiation or partial absorption) con-
dition acknowledges the finite rate of reaction (by.three-body effective collisions) after ion
approach and implies a probability for subsequent diffusional-drift expansion of the unreacted ion
pairs; if I'; is infinitely fast as at high N then (2.70) is recovered. The diffusion—drift equation
(2.68) governs ion transport up to S from which the ion departs inward with an effective finite
speed I'y(S) towards certain recombination within $, the radius that characterized the transition
from transport (i.e. ineffective collisions) alone to reaction (i.e. effective collisions). Since

F = 4nRY = (4nRI'5) n=(R,t) = a(t) N, (2.83)
then, provided Boltzmann equilibrium conditions for the ions are maintained, the recombination
coefficient (F/N~) would be

o = (4nR2Iy) exp (= V/EkT) = ag(R) exp (— V/kT), (2.84)
where we are reminded of the role of the finite rate of three-body energy-change collision (the
reaction rate) by attaching 3 as a subscript to both « and I.

Hence, (2.82) is simply
o3 (S)n=(S, t) = 4mS%(S,t) = aN-, (2.85)

which equates the finite collisional recombination rate within § to the flux of production of $-ion
pairs. The basis of this radiation condition (2.82) or (2.85) has already been established
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theoretically by (2.52). Thus the steady-state solution of (2.68) for the ion density subject to
(2.82) or (2.85) is
n(R,t > w) = N-exp (— V/KT) [1 _ii@] (2.86)
ay P(S)

which yields the following steady-state recombination coefficient:

. O‘a(S) cxp ( - V('S)/kT) Xy _ %y
Ut > ) = S exp (= V(S)/RT) + ey, = oy ot

in agreement with the results (2.64) and (2.58) of the previous subsection.

(2.87a)

For this case of finite reaction, a relation between « for the homogeneous case (with source only
at infinity), and the contraction and escape probabilities 2%¢(R, Ry) for the case where ion-
pairs are continuously generated with internal separation R, can be obtained, as before, from
(2.89) to yield
[n~(R) = (a/axg) N-exp (= V/ET)] P(R)  =m>e P(R)

and PR K] = Ry PRy~ (afoe) N-exp (—VRT) PR) PRy 2770
. _ _ P(RY-P(R) w>e . P(R)
PR, Ry) = P(Rg) — (/o) N- eExp (= V/kT)P(R)/n(R) 1=k, (2.780)

The number density of ion pairs generated with internal separations in the interval dR about
Ris 4nR?n~(R) N*dR.
When 7~ is given by (2.86) with § = Ry then

« P(R)

P(R,Ry) = — =1—-P°(R,Ry), 2.77¢

( L‘) atrP(RE) ( E) ( )

so that n~(R) = N-exp (= V/kT) Z°(R, Ry) (2.79b)
and a = 4nRy Dexp (— V/kT)[0Z2¢/OR] g, (2.805)

which are the direct generalizations of (2.79 ) and (2.804) to finite reaction. Thus £°, in general,
may be interpreted as the fractional departure of the ion density from Boltzmann equilibrium
and is the solution of V-{exp (— V/kT) V&¢} = 0 subject to £¢(c0) - 1 and D(0#¢/0R) = I'y P¢
at Rp. Hence (2.85) and (2.87¢) may be rewritten as

a = Pray = P°(Rg, Rp) oty (2.870)
where the probability of recombination

P = arn/(“rn"'atr) = ‘@C(REB RE) (2'77d)

{Oﬁrn/atr, drn K Qtr,
N

Qrn> Otr,
is simply the contraction probability for ion pairs generated with internal separations equal to
the sink radius, i.e. Z; < 1 is the probability of intrapair (geminate) recombination.

Note that the boundary condition (2.85) is essentially identical with the exact condition (2.52)
based on detailed kinetics when Ry is identified with S. This boundary condition can be suitably
incorporated by rewriting the time-dependent Debye-Smoluchowski equation (2.68) as

—-Qgt—+V'j=T'3n“8(R—S) = oyn~0(R—-S), (2.884a)
which uniquely identifies the strength of the sink as the speed of three-body recombination; for
I';large compared with the rate of ionic transport, the reactivity of the sink is effectively instan-
taneous, and « is given then by (2.73); while (2.87) pertains when I'y is comparable with the ion
transport rate. No deactivating reaction implies zero I, and hence zero rate of recombination.
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The number density »; of all ion pairs AB with internal separation R > S then decays at
a rate

_Slcf_V; — _a% © 4nR2N+n~(R,t) dR = [4nS2Tyn—(S,t) — {F, — 4nS% (S —¢,t)}] N*
S
=a(t)y NtN-— F, N, (2.885)

where F,, is the rate (s~1) of generation of negative ions at infinity, and a is the time-dependent
rate (cm®s~!) of recombination appropriate to asymptotic ion densities N*. If the ion current
approaching S is absorbed by reaction within S, then lim,_,,j(S—¢,¢) — 0. In steady state, the
rate 4nR?j(R,¢t) from (2.88a) is constant for R > §+¢ and equals both the production and
absorption rates F,, and 4nS%/'yn—, respectively, in (2.885).

In conclusion, this subsection has emphasized the decomposition of the recombination rate o
into its reaction and transport components, orn and cir, respectively, which act in series so that
o = Proyr in terms of the recombination probability & of (2.77d), and is determined by the
rate limiting step ary or ayr in the limit of low N and high N respectively. Also the relation has
been developed between « and &£, for the homogeneous case with the escape probability £° of
ions generated within the medium. Steady-state recombination can therefore be regarded as
being maintained either by a continuous source in ions at infinity or by a source that generates
within the medium R-ion pairs with density (2.86). In the latter picture, the recombination
probability Z; is simply the probability £, for contraction of those geminate Ry ion pairs so
generated. Also proper contact has been established between the microscopic treatment and the
generalized Debye—Smoluchowski equation (2.884) which blends the macroscopic phenomena
of diffusional-drift (which is characterized by the departure from pure classical ion-ion
trajectories to a zigzag statistical pattern) and reaction between individual ion pairs. The sink in
(2.884) is compressible in the sense that its radius S is determined by collisional kinetics, which
depends on the gas density N, as explicitly shown in § 4.2 where S'is shown to contract from ca. R,
to ca. (R,A,)* as N is increased.

2.5. Analytical solution of the time-dependent generalized Debye—Smoluchowski equation

Equation (2.65) is frequently called by those interested in coagulation in colloid solutions the
Debye—-Smoluchowski equation after the original authors who found its steady-state solution for
the field-free case (V' = 0) and acoulomb interactionrespectively, appropriate to aninstantaneous
sink (#; - 1or I' > 00). While an exact time-dependent solution can be immediately obtained
in the field-free case, there has as yet been no exact solution obtained for a general interaction V,
although a large body of literature exists on various analytical approximations for the coulomb
interaction. These are based on Green functions, perturbation expansions, ‘ prescribed’ diffusion,
ctc. (Mozumder 1968, Abell & Mozumder 1972, Abell e al. 1972, Magee & Tayler 1972), and
on the Mathieu equation (Hong & Noolandi 1978) via the resemblance between (2.65) for the
coulomb interaction and the Schrodinger equation with an R~-%-potential. It may also, of course,
be solved by numerical procedures (Freed & Pedersen 1976).

The generalized equation (2.884) is of basic significance not only to ion—ion and atom-atom
recombination in a gas and in dilute ionic solutions, but also to medical radiology and to diffusion-
and field-controlled reactions in metabolizing systems (as enzyme-substrate reactions in a cell
(Reid 1952)). It is of general importance in theoretical physics. In this section, we present an


http://rsta.royalsocietypublishing.org/

o \

p &

JA \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

| A

”/\\ \\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

470 M. R.FLANNERY

approximate yet accurate analytical time-dependent solution, and associated recombination
rates, of the equation

RY (2.894)

with a general diffusional-drift current
J(R,t) = Dexp (— V/kT)d[n(R,t) exp (V/kT)]/OR. (2.890)
Our basic equation (2.50) derived from microscopic principles is, in effect, equivalent to (2.89)

solved subject to certain boundary conditions.
The boundary conditions are

n(R— o0,t) = N~exp (- V/kT), (2.90)
the Boltzmann distribution, for continuous generation of ions at infinity, and, either
n(R,t) =0, R<S, (2.91q)
for an instantaneous sink within a sphere of radius §, or
I'sn(S,8) =5(S,¢), (2.915)
for a partially absorbing sink where I is, as before, the speed of (three-body) reaction for ion
pairs brought to internal separation § by ion transport such that

oy = AnS2Ty, (2.91¢)
The initial (¢ = 0) distribution

n(R,t =0) = N-exp(—V/kT), (2.92)
is assumed Boltzmann. Two examples follow below.
(a) Field-free case, V = 0. Although the exact diffusion-controlled solution (¥ = 0) is known

(Reid 1952), being analogous to heat conduction through a sink, we include it here for use in the
case of general V(R). Introduce the dimensionless quantities

r=R/S—1, T =Dt/$, (2.93)

and let n'(R,t) = (R/S)n(R,1), (2.94)
such that (2.89) with ¥ = 0 reduces to

on'(r,1) [0r = %' (r,T) JOr. . (2.95)

This equation can be solved directly by the method of Laplace transformation to give
(R, t) = N—{1—(S/R) erfc[(R—S8)/2(Dt)}]}, (2.96)

appropriate to diffusion (d) controlled transport and spontaneous (s) reaction for an initial
random distribution N—, where the error function (or probability integral)

2 0
erfcy =—| exp(—y? dy. (2.97)
e
The rate of recombination for this case (V = 0) is
o) (t) = 4nS%(S,¢) /N~ = aq[1 +8/(nDt)}], (2.984)
where aq = 4nSD (2.985)
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is the steady-state (¢ - c0) solution (2.72) obtained by Smoluchowski (1917) for coagulation in
colloid solutions and by Harper (1932) for ion-ion recombination in a gas. The rate of decrease
in the number 4% of diffusing species outside § can be evaluated directly from,

Yo N-S[7 anSRerte [(R—5)/2(D)H dR = 2N, (2.99)
S

where the derived «§ is identical with (2.98), as expected from (2.894). Under the condition
(2.91 ) for finite (f) reaction and diffusive transport,

nP (R, t) = N~{1+ (x/xa) (S/R) [exp (22x) exp x2erfc (x + Q) —erfc 2]}, (2.100)

where the time dependence is contained in

x(t) = (1 +ag/axd) (DE)Y)S = (ay/e) (DE)}/S, (2.101)
and in Q(t) = (R-S)/2(D¢t) %, (2.102)
which vanishes at the sink, and o = agaa/(ag+ca) (2.103)

in terms of (2.91¢) and (2.99). When the rate a, of reaction is much larger than the rate aq of ion
transport, ¥ — 00, & = &g, the limiting rate, and (2.96) is recovered from (2.100). The time-
dependent recombination rate from the radiation condition (2.915) with (2.100) is

odP(2) = agn(S,¢) /N~ = a[1 + (ay/xq) exp x2erfc x], (2.104)

and o is therefore the steady-state (£ — o) solution (since erfc — 0). The rate (2.104) also follows
directly from 472D (dnq/dR)g as expected from (2.915). At ¢t = 0 the recombination rate a{(0)
issimply the rate a4 of reaction, as expected, since an initial ion distribution N~ has been assumed.
Note that (2.98) for the instantaneous sink yields an infinite recombination rate, at ¢ = 0, again
as expected from the assumed infinite rate of reaction.

(b) General field V: The following analytical solution is based on the novel transformation
from R to the variable
dR (R

R={f:exp[V(R)/kT]%£}_l; - Te)zexp(V/kT), (2.105)

a transformation not without its physical significance. It is related to the probability £, in
(2.77a) that an Rj-ion pair will further contract by diffusion under V, in the presence of an
instantaneous sink at S (or else to the diffusional expansion against V to infinite separation), i.e.
(2.77 a) is rewritten with the aid of (2.105) as

Z&(Ry, S) = R(S)/R(Ry) = S/R,. (2.106)
Let ny(R,t) = n(R,t)exp (V/kT), (2.107)
such that (2.89) becomes aanf’ H_ 1%_6% [E29”_Va%’t)} , (2.108)

where the transformed diffusion coefficient (cm?s-1) is

D = D(dR/dR)>. (2.109)


http://rsta.royalsocietypublishing.org/

o \

p &

JA

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \

o \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

472 M.R.FLANNERY

The form of this equation is, in the transformed R-representation, identical with that for the
field-free case in the original R-representation. Accordingly, introduce scaled quantities (2.93) and

F=(R/S)—1, 7=Dt/52, n = (R/S)ny(R,?) (2.110)
such that (2.108) reduces to
on'(7,7) _ (dF\20%/(F, ) _ o d#\2d?r) on’
or (dr) T +{(dr) dﬂ}'a7 (2.1110)

which suggests the following two procedures for solution. Assume (d7/dr) remains constant such
that introduction of ¥ of (2.110) yiclds

on'(7,7) _ 0%/(7,7)
e = a1 (2.111b)
which is the field-free diffusion equation in 7, #-space. Alternatively, since
dr\2dzr R
(d_r) = S[R2 exp (V/kT) =54 V/kT)] (2.112)

in the right-hand side of (2.1114) vanishes to O(R-3) for the Coulomb interaction and is negligible
for R? > R%;, = S(e?/kT)2,
on'(r,7)  %'(r,7)

or = 2’ (2.1116)

the one-dimensional diffusion equation in r, r-space.
The full solution of (2.89) appropriate to spontaneous reaction (2.91a) is therefore, after some
analysis, of (2.1115),

§ (R—-38)dR
) = [V~ kT 1—-—:
R, 1) = N-cxp (— V) ){ erfe [2(Dt)%dR]; (2.113)
The recombination rate then reduces to
. _ S2exp[ — V(S)/kT]}
O)(t) = 4n82j(S,8)/N- = {1 2.114
200) = 5%, 1)/N- = et 14+ 2L (2114)
where the steady-state transport rate
ay = 4nSD = 4nDR,/P(S) = ay, (2.115)
with P(S)=R/S=R, f “exp (V/kT) 9%, (2.116)
s

in terms of the natural lengfh e?/kT asin (2.56). Under the condition of equilibrium with the
field when the Einstein relation written as DR, = Ke holds, the steady-state solution is, for a

coulombic attraction o) = dnKe/[1 —exp (R, I8)1, (2.117)

as previously obtained by Bates (1975) via the steady-state analysis of an instantaneous sink,
leading to (2.73). The present paper represents the first time, to the author’s knowledge, that the
transient solutions (2.113) and (2.114) for instantaneous reaction in the presence of a general
field have been obtained. Since constant (dR/dR) is assumed in (2.111 b), (R—S8) (dR/dR) can
be replaced by R —§ which yields a result also obtained via (2.111¢).

The boundary condition (2.915) for finite reaction under a field is

T5(S)n=(S,¢) = Dexp[—V(S)/kT]{0[n(R,t) exp (- V/kT)]/0R}, (2.118)
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which for (2.1115) and (2.111¢) transforms as

[%n;]o = (%‘) n'(0,1) (2.1194)
and
on’ %rn d7 ’ _ (%m S ,
{'5?]0 B ("?«“) (E) (0.2) = (7) [:sexp V<S>/kT] n'(0,2) (2.1190)
respectively, where
arn = 4nS2lyexp (= V(S)/kT), o = (crnair)/(0en +otr) (2.120)

are the reaction and recombination rates, as before.

Hence, after exercising due care, we obtain for a general interaction the full time-dependent
solution obtained from Laplace transformation of (2.1115) subject to boundary conditions (2.90)
and (2.1194), and to the Boltzmann initial condition (2.92):

n(R,t) = N-exp (= V/kT) {1+ (a/a,,) (S/R) [exp (207) exp R2erfc (¥ + Q) —erfc 0]}, (2.121a)
where Ft) = (1 + /o) (DE)}/S, (2.1215)

Q(t) = (R-18)/2(Dt)3, (2.121¢)
in terms of (2.105) and (2.109). Solution of (2.111¢) subject to (2.1195) also yields (2.1214) but
with D evaluated at S, and with £ replaced by @ of (2.102), which are essentially equivalent

since constant dR/dR is basic to both methods.
The full time-dependent recombination rate now follows from (2.1214) as

o(t) = agn=(S,8)/N~- = a[1l + (arn/oir) exp ¥ erfe ¥sl, (2.1224)
where O(R = §) in (2.121¢) vanishes, ¥in (2.1215) is, with the aid of (2.105), (2.109) and (2.121),

Py = (1 +Z*zl>£%£)jexp[V(S)/kT] [sf: exp (V/ET) R-ZdR]_l, (2.1225)

at S. For the field-free case (V = 0), (2.121) and (2.122) reduce to the diffusion-controlled
results (2.100) and (2.104), respectively. Expressions (2.120) and (2.122) are the analytical time-
dependent densities and rates obtained from (2.89) for an arbitrary spherical field V(R) for an
initial Boltzmann distribution, and are accurate where (d#/dr) can be assumed constant in
(2.111a).

As t increases from zero,

exp y2erfcy > 1—(2/Jn) x +x2— (4/3Jr) x>+ ... (2.123)
such that
aft > 0) = cxm{l —%g—i—:%ﬁexp [V(S)/kT] [S f : exp (V/KT) R dR]_l} (2.124)

decreases initially from the reaction rate o,,. As ¢ - o0,

expx?erfcy - (1/x4m) (1—1/2x2+38/4x%...), (2.125)
such that the long-time dependence is

a(t > 00) = a{1 +§;SCXP [(;gt()?/”] [Sf:exp (V/KT) R—MR]}. (2.126)
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The transient rates (2.124) and (2.126) for short and long intervals of time are best observed at
high gas densities when a,, > a,, & a respectively. The full transient densities (2.121) and
rates (2.122) are of basic significance to all diffusion-drift phenomena in gases or dilute solutions,
such as ion-ion, ion-atom and atom-atom recombination in dense gases, or coagulation of
colloids in ionic solutions.

30

20

a(t)/ (108 cm?® s—1)

10

N/NL'—

1

2
2

5

0 ! | ] | | I | ! ! 1 710
-1 0 2 4 6

Ig (D1/S?)

Frcure 1. Explicit time dependence of recombination rate a(¢) at various gas densities V (in multiples of the
Loschmidts number Ny, =2.69 x 10'® cm~2 at s.t.p.). Characteristic times (§?/D) for diffusion are (16, 11, 8,
5, 3) x 10~12s for N/Ny, = 1, 2, 3, 5, 10 respectively.

The full time dependence in (2.1224a) for « is contained in (2.1225) for yg which, for a pure
coulomb attraction, varies as

/%S(T) = (1 + arn/o‘tr) T%(Re/S) [CXp (Re/S) - 1]_13 (2' 127)
where the scaled time is T =t/(5%/D) (2.128)

where $2/D is the approximate time required for an ion to diffuse from the boundary to the centre
of the sink.

With the aid of a simple expression, (4.124), and associated quantities, derived in § 4.2 for the
reaction rate ary, and the exact expression (2.63) or (2.71) for the transport rate, the full time
dependence of the recombination rate (2.1224) can be explored. Figure 1 illustrates the variation
of a(¢) with ¢ for several values (1, 2, 3, 5, and 10) of the gas density N (in multiples of N}, = 2.69
x 101°cm~3, the number density ats.t.p.). These rates are appropriate to a fictitious (but repre-
sentative) case of equal masses (M = 16 a.m.u.) of the ionic species with mobility 2cm?2V—-15-1
in an equal-mass gas and with d; in (4.17) taken as 0.6 (Flannery 1978). Figure 1 exposes features
of basic significance to the physics of recombination.

Since the initial ion distribution is assumed to be in Boltzmann equilibrium, the initial rate of
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recombination a(¢ = 0) is simply the reaction rate a,, in accord with (2.124). The ions then begin
their transport and replace the reacted ions within a time $2/D. Since the recombination is
determined by the rate-limiting step of reaction and transport, its variation with time is best
observed at high gas densities N where arn > ayr such that a decreases from ey to ey, the steady-
state limit at ¢ > §2/D. Variation of a with ¢ for N & 10Ny, for example, reflects the change in «
from reaction controlled transport. The reaction rate at high N (2 5M7,) is so large because the
radial extent S of the sink becomes so contracted that the Boltzmann distribution of ions at its
boundary is locally very large and offsets the inherent reduction in cross section. For N = Ny,
and lower, the transport is always faster than the reaction such that the reaction rate limits the
rate of recombination at all times, and a straight-line dependence is observed as in figure 1. The
steady-state limit is, of course, independent of any initial condition adopted.

Measurement of the variation of & with ¢ at high N(Z N;,) would, therefore provide valuable
information about the physics intrinsic to recombination, i.e. of the transport component at
¢> $2/D and, more significantly, of the reaction component at high densities when ¢ < §%/D.
Such experiments are feasible with modern techniques such as laser spectroscopy. In figure 1 are
indicated relevant time-scales. The radii § of the sinks are compressible (§4.2) as N is raised,
and the unit of time (§2/D) varies from 1.6 x 10~!s at a gas pressure of about 1 atm to 3 x 10~1%s
atca. 10 atm. The laser can be tuned to some known molecular rotational or vibrational transition
since electronic transitions are precluded because of the time-scale. The ion densities can then be
determined by fluorescence.

Figure 1 is, thercfore, a striking illustration of the transition in recombination from reaction
alone to the limiting step of reaction or transport. Verification is feasible, not only by laboratory
experiment but also by Monte-Carlo computer experiments such as those of Bates (1980¢) and of
Bardsley & Wadehra (1980), suitably generalized to include explicit time dependence.

The basic equation (2.89) can be written to incorporate both the condition (2.915) for a
finite rate otrp of reaction and the possibility of a scavenger reaction proceeding in parallel at a
rate yn, by

——%+V-j—yn = Iyn8(R-S). (2.129)

By Laplace transformation, we can show that the time-dependent solutions are given by
nexp (—7yt) and aexp ( —yt), with n and « given by (2.1214) and (2.122a), respectively.

Finally, transient solutions of (2.129) appropriate to other initial conditions are important,
for example where intense ionization is deposited into or produced within a localized system
either by a high energy beam of particles or by radiation such that many ions may diffuse out of
the localized system before neutralization occurs. The rate of disappearance of ion-ion or
electron—ion pairs scattered along the track of the ionization beam is time-dependent and is given
by the appropriate solution of (2.129) applicable to ‘columnar’ recombination rather than
‘volume’ recombination as discussed here.

When ./ ions are generated instantaneously by a spherical surface source at distance R, from
the central positive ion, i.e. Ry-ion pairs are produced, (2.89) is solved subject to

#(R,t = 0) = A exp (= V/KT)S(R—Ry) /4nR?,
J(Sa t)= Fan(sa t), (2130)
n(R - o0,t) = 0.
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For the field-free case (V' = 0), by analogy with the corresponding problem in heat conduction
(Carslaw & Yeager 1959), the solution can be written in terms of the quantities y and £ associated
with a continuous source at infinity as

N 1 1
n(R,1; Ry, S) = mm{% [exp (—£§) +exp (—£5)] — 2y exp x*exp 282, y erfc (x +2,),
| (2.131)
where 0, = (R—R))/2(D0)}, 0, = (R+R,—25)/2(D)} (2.132)
are similar to (2.102), and x() = (L+oag/ay) (Dt)E/S, (2.133)

as before (equation (2.101)) in terms of (2.91¢) and (2.99). If the ions are generated at the reaction
surface, R, = S and 2, = 2,. The volume external to the spherical surface of the sink is 7" so that
the frequency (s—!) of recombination is then

ve(t) = —f (g-l-l)dR = 4nS2'3n(S,t; Ry = S)
¥

ot
= [#'T3/(4Dt)2] [2/\m — 2x(t) exp x* erfc ]
= — [NT5/(4D1)2] d(eX erfec x) /dx (2.134)

The initial frequency v,(0) is #T'y/(nDt)%, and as ¢ - oo, vr — zero as v,(0)/2y2. The total
number of ions that have recombined after time ¢ is

¢ 2 PNX, t->0,
Hil) = j po(t) dt = PA[L —exp ¥2(t) exfe y(£)] — {( eyt (2.135)
0 PN, t—> 0,
where the probability of recombination in the absence of the field V' is
P(V—0) = ay/(az+ay) (2.136)

and remains less than unity in the presence of outward diffusion.
For a general field V(R), the general solution appropriate to (2.130) is obtained by use of
transformation (2.105) and of (2.111¢) to yield.

JVexp4(n—1-2%V/kT) (%0) (4Df)~} {jﬁ [exp (—£2%)

n(R,t; Ry, S) =
texp (- 22)] — 27 exp K% exp 20, T erfc @Sml)}, (2.137)

in terms of the corresponding tilde quantities (2.105) and (2.1224). For a coincident source
and sink, the recombination frequency is

ve(t) = [N T/ (4D [2/fm — 275(0) exp B exfe Fs) exp (— V(S)/KT),  (2.138)

where ¥q is given by (2.1225). The number of recombined pairs after time ¢ is
Ni(t) = Pr A1 —exp ¥ erfe Vg, (2.139)

where the probability of recombination in the presence of general V, in terms of the reaction and
transport rates arn and air, respectively, is

P = arn/(atr'f'arn), (2.140)

as before (equation (2.77d)). Thus Z: is controlled by the relative rates of reaction and transport.
At low N, Pr — orn/oer while at high N, &, - 1. Expressions (2.1214a), (2.1224a), (2.137) and
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(2.138) represent the first time that analytical solutions of the Debye—Smoluchowski equation
subject to conditions (2.90)-(2.92) and (2.130), respectively, have been developed for any
(general) interaction V(R).

The above analysis has therefore shown that the same key quantities appear in two distinct
time-dependent problems: homogeneous recombination where the process is driven by a source
operating continuously at infinity; and geminate recombination where the process is initially
established by an instantaneous source of ion pairs within the medium (as produced by a laser
burst) and is controlled by the relative reaction and transport rates.

For ‘ntense ionization, the interaction between the ions can no longer be assumed ab-initio to
be pure coulc:ab. The interaction ¥ must then be determined by self-consistent (with the
recombination) methods as developed in § 4.

Competition between the increased number of sinks (assumed equivalent) for the flux incident
from infinity is acknowledged by the last term of the following equation:

Qp(R,1) /3t = V- Fip—Toepd(R—S) —a(t) (p())sp(R,1), R = &, (2.141)
for the concentration p in cm~®of R-ion pairs such that p dR is the concentration of ion pairs with
internal separation: R in the interval dR about R. In (2.141) the density of unreacted ion pairs
(with R > S) is e
s = [ pR AR = [ axkep(R,0) d, (2.142)
and the inward diffusional-drift operator f: is given by (2.45) since we assume in addition that
the diffusion coefficient D remains constant. Substitute

p(R,1) = C(t)g(R, 1) (2.143)

oC(1) fot = —a {g(1)s C¥(1), (2.144)

such that the probability density or pair correlation function g(R, f) satisfies the usual Debye-
Smoluchowski equation,

n (2.141) where C satisfies

0g/ot = V- fg— Tyg8(R-S) (2.145)
for an isolated sink surrounding a positive ion (say).
Thus c/[ucf }Sdt] (2.146)

where C, is the initial concentration of ion pairs, describes the time decay of all ion pairs via
recombination, and g(R, ¢) describes the spatial distribution of R-ion pairs. The recombination
rate '

0 =—d%[ f xR p(R, 1) dR] /N+N— (2.147)
therefore satisfies
a(t) {1 — ((g(t)>k C2(t) [ N*N7)} = ao(t) C(£) / N* (2.148)

where a, is the rate that is obtained from appropriate solution of (2.145) for an isolated sink (or
constant C). When the initial concentration C, and the recombination time ¢ are sufficiently
small that

f >s dt < 1, | (2.149)

and C(f) remains constant ~ N* then equations (2.147) and (2.148) reduce to the case of an
isolated sink with associated rate .
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3. ‘GENERALIZED QUASI-EQUILIBRIUM’, STEADY-STATE METHOD
FOR THE REACTION AND TRANSPORT RATES

Rather than from the complete determination of « via solutions of (2.20) inserted in (2.52),
or alternatively in (2.59) via a; of (2.44), intrinsic physics may yet be uncovered from the solution
of (2.43) with (2.44) modified by a procedure suggested by (2.35): either neglect upward
transitions £g;; or, in effect, rewrite the energy-change frequency terms on the right-hand side of
(2.47a), with the aid of the null-collision relation (2.41), as

N3 (W E k- 3 Ntk N(R), (3.1)

where v(R) is some averaged collision frequency va/A in terms of a mean free path A. With the aid
of (2.46), (2.53) and of relation (2.10), (2.50) in this approximation yields,

min (R, Rg)
4nR2D dn(R) +n(R) w] = az(R)n(R) = 4n : v(R)n(R) R2dR, (3.2a)
dR dR 0
|~ %DR%(R), R <Ry, (3.20)
F,(Rg), aconstant, R > R, (3.2¢)

in which the speed vq used for ion pairs within the collisional sink that extends to Ry is assumed
to be mainly controlled by the speed D/R (cf. Flannery 1976) of inward diffusion due to the effect
of the sink on the ion distribution. By use of an integrating factor exp (V/kT—R/A), (3.25) is
solved to yield

R)exp (V/kT)exp (—R/A) = n(Rg) exp[V(Rg)/kT] exp (— Rg/A) (3.3)
for R < Ry. For R > Ry when the sink exerts a constant effect, the right-hand side of (3.2¢) is
constant so that the constant flux solution (2.584) applies. Hence, continuity at Ry requires

R){exp[V(R)/kT]exp (Rg—R)/A+[P(Rg) [oan] a3(R)} = N-, R < Ry, (3.4)
where the constant flux F, in (3.2¢) is equivalent to ag(R) n(R) for R > Ry. The overall recombi-

nation coefficient is,

1 ’ {as(Rg) exp[ — V(Rg)/k T]} “h/P(RE)
@ = glos(Ru) n(Ru)] = o Ry expl = V(Ry) /ET] + ] P(Ry)

(3.5)
as before. Since an varies as N-1, at low densities (and for small R), when the second term in
the right-hand side of (3.4) can be neglected in comparison with the first,
n(R) = N-exp[—V(R)/kT]exp(R—Rg)/A, R < Ry
= ny(R) exp (R—Ry)/A. (3.6)
Hence (3.24) yields

a3(Rg) ny(Rg) =%N—exp(—RE//\)J‘R vaexp[—V(R)/kT]exp (R/A) R*dR.  (3.7)

The speed vgexp (— V/kT) appropriate to the distribution (3.6) is taken as approximately
its thermal value (v) corresponding to energies greater than — E. Hence, at low densities,

oy(Rg) exp[— V(Ry) [kT] = (4nv)/2%) {[2 ~2(Ru/A) + (Rp/A)*] —2exp (—Rp/A)}  (3.8)
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which, in the low density limit, reduces to

4 R (v
e (Ry) exp [ — V(Re) [ETT = D 14 (R /) 1 35 R/ )~ sho(Re /07 + ., (3.9)
which exhibits 